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Abstract

The relay channel consists of a transmitter inputa relay inputzs, a relay outpuy, and a receiver output
ys. In this report, we combine a degraded semi-deterministic relay chartiel semi-deterministic orthogonal
relay channel to obtain a new mixture relay channel. For the new mixtlag channel, a combination of the
compress-and-forward strategy and the partial decode-an@ifdrsirategy achieves the capacity.

I. INTRODUCTION

The discrete-memoryless relay channel consists of fosrs&t, X5, )», V3—and a collection of conditional
probability mass functiong (., .|z1, 22) on Vs x Vs, one for eachzy, z3) € X1 x X2. The transmitter input
is denoted byr; € X}, the relay input byx, € X5 , the relay output byys € )» and the receiver output by

Y3 € Vs.
A (2N7 N) code for a relay channel without feedback consists of a setteflersiv = {1,2, ..., [2V7|},

an encoding function
e:{L,2,...[2"VF]} - &)

a set of relay functiong¥,,}"=7 such that
U,V 5 X, 1<n<N

and a decoding function
d: Y —{1,2,.., [2VF]|}.

The relay is causal in nature. Hence, the input of the relayis allowed to depend only on the past outputs

of the relayyz1, y22, ..., yon—1. If the messagey € W is sent, let
A (w) =Pr{d(Y3") # w|w sent

denote the conditional probability of error. The averagebpbility of error is defined by

PN = LQAlfRJ Z/\(w).
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The probability of error is calculated under the uniformtidition over the codewords € W. The rateR
is said to be achievable by the relay channel if there existsqaence of2¥%, N) codes withP™) — 0 as
N — oo. The capacityC' of a relay channel is the supremum of the set of achievabés.rat

For a relay channel with causal and noiseless relay-trateanfeedback, the only difference is that the

n=N
n=1

transmitter consists of a set of encoding functid&s, } such that

S WYt s A, 1<n<N.

The relay channel was first introduced by van der Meuleriin [A]] Cover & El Gamal established two
fundamental coding theorems for the relay channel in an itapbd paper([B]. In addition, these two coding
theorems were combined in the same paper to give the best lmwend for the capacity of a general relay
channel[[3, Theorem 7]. Recently, Chong et al. determinedtanpially larger achievable rate in![4, Theorem

2]. In particular, they determined that the following raseaichievable for any relay channel:

I (X1§}>2Y3|UX2> +1(U; Y2V Xs)

Rcnve = sup min . Q)
I(Xa X5 Ys) = 1 (Yo ValU X1 X3
where the supremum is taken over all joint probability masgfions of the form
p (v, u, 21,22, Y2, 92, y3) = p (v) p (u|v) p (z1]u) p (22]0) p (y2, ys| w1, ©2) p (J2] w2, Y2, u) 2
and subject to the constraint
(X3 V3|UV) 2 T (Ve ValU XoY3 ) 3)

The capacity of the relay channel has been determined fofotloeving special cases:
1) the degraded relay channel, the reversely degraded ollagnel and the relay channel with causal
noiseless feedback from the receiver to the relay [3];

2) the semideterministic relay channel [5];

3) a class of relay channels with orthogonal componerits [6];

4) a class of modulo-sum relay channéls [7];

5) a class of deterministic relay channels [8].

However, the capacity of the general relay channel remaikaawn. The achievability of the above classes
of relay channels follows directly from appropriate sutogtbns for the auxiliary random variables inl [3, Th.
7]. Moreover, except for the class of modulo-sum relay ce#i], the capacity of all the other classes of
relay channels meet the cut-set upper bound. The questinaime as to whether there exists other classes of
relay channels where the lower bound given by [3, Th. 7] m#éetscut-set upper bound.

In [9], we answered the question affirmatively by determinthe capacity of three new classes of relay

channels:

« The first class of relay channels corresponds closely toejeadied relay channels considered by Cover and
El Gamal. However, for the first class of relay channels, tpuat of the relayy, depends probabilistically
only on s, zo andys wheres is a deterministic function of4, i.e., s = f1 (z1). In addition, we require
that S — (X.,Y,) — Y3 forms a Markov chain for all input probability distributiem (z1,x2). If the

deterministic functionf; is not a one-to-one mapping, the class of degraded semindeaistic relay
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channels strictly contains the class of degraded relay réian The capacity for the degraded semi-
deterministic relay channel is achieved by the partial deeand-forward strategy.

o The second class of relay channels that we consider is tlss ofasemi-deterministic orthogonal relay
channels. There are orthogonal channels from the trare/nitiay to the receiver and the output of the
relayy» is a deterministic function of;, z2 andys. Furthermore, the capacity cut-set upper bound for this
class of relay channels is maximized by independent inpoibadyility distributions and can be achieved
by the compress-and-forward strategy. The class of setart@istic orthogonal relay channels strictly
contains the class of deterministic relay channels consitlby Kim.

« The third class of relay channels also corresponds closdlyet deterministic relay channel considered by
Kim. However, instead of having a noiseless relay receivis, e have a causal and noiseless feedback
from the relay to the transmitter. Furthermore, instead enfuiring the output of the relay, to be a
deterministic function ofco andys, we require the output of the relay to be a deterministic function of
x1, T2 andys. The capacity for the class of semi-deterministic relayncteds with causal and noiseless
relay-transmitter feedback can be achieved by the hasteam@rd strategy.

In this report, we combine the first two classes of semi-deit@stic relay channels together to obtain new

channels whose capacity can also be determined.

II. CAPACITY REGION OF A NEW CLASS OF MIXTURE RELAY CHANNELS

Let us first describe the class of mixture relay channelsvbelo

Definition 1: The mixture relay channel has two relay outputgr—andys, and also two receiver outputs—
y31 andyse. Furthermore, the class of mixture relay channels satisffiedollowing conditions:

« The conditional probability mass function describing thamnel is given by

P (Y21, Y22, Y31, Ys2|x1, T2) = p (y31]21) p (Y2121, t, ys1) p (Y22ls, t, ys1,Y21) P (ys2|z2, t) p(t)  (4)

wheres is a deterministic function ofy, i.e.,s = f1 (1) andT is independent of the input¥; and X,
e s is a deterministic fUﬂCtiOﬂ’)g, Y21 and Y22, i.e., s = f2 (l‘g,ygl,ygg),
« tis a deterministic function of, andyss, i.€.,t = f3 (z2,y32),

o and thaty21 is a deterministic function of, x2, Y31 aﬂdygg, ie., Y21 = f4 ($1,I27y317y32).

We note that this is strictly neither a degraded semi-detestic relay channel X; — (S, X5,Y3) — Yo
does not form a Markov chain) nor a semi-deterministic aytmal relay channelyfs # f1 (21, x2,y31,¥32)).
In fact, this is a mixture of the degraded semi-determinisglay channel and the semi-deterministic orthogonal
relay channel.

The capacity of the class of mixture relay channels desdrineDefinition[1 is given by the following

theorem:

Theorem1: The capacity of the mixture relay channel is given by

Cy = sup {I (Xl;Y21Y231|ST) + H (S),I (Xl;Ygl) + I(XQ,YE;Q)} (5)

Pxix,
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where the supremum is taken over all independent input pitityadistributions.

We first reproducel |9, Property 1-Property 6] for the classerhi-deterministic orthogonal relay channels
below for convenience.

Property1: For all input probability distribution® (x1,x2), (T, X2,Y32) — X1 — Y31 forms a Markov
chain.

Property2: For all input probability distributiong (x4, xz2), (X1, Ys1) — X2 — Y30 forms a Markov chain.

Property3: For all input probability distribution® (x4, z2), (X2,Y32) — (X1,T) — (Y2,Y3;) forms a
Markov chain.

Property4: For independent input probability distributions, i.@.(x1,22) = p(z1)p (z2), (X2,Y32) —
T — (Y3,Y3;) forms a Markov chain.

Property5: For independent input probability distributions, i.e(x1,x2) = p (x1) p (z2), Y31 and Y3, are
independent.

Property6: The termsl (X;; Y2Y31|T) andl (X;; Y3, ) for the semi-deterministic orthogonal relay channel is
maximized by the marginal input probability distributipriz, ). The terml (X5;Y32) for the semi-deterministic
orthogonal relay channel is maximized by the marginal iqmebability distributionp (z2).

The proofs are given in Appendix I.

Next, we note that that for the mixture relay channelys1, ys1, ysz|x1, z2) IS given by

(@)
Z P (Y21, Y22, Y31, Y32 |1, ) = Z P (ya1|z1) p (Y1121, ¢, y31) P (y22(8,t, Y31, y21) p (Ys2|22, 1) p (1)
y22€Y22 Y22€Y22

= p(ys1lz1) p (y21]z1, T, y31) p (ys2lz2, ) p (t) Z p (Y225, t, Y31, y21)
Y22€Y22

= p (ys1lz1) p (ya1lz1,t,y31) p (Ys2|22, ) p (1) (6)
where
(a) follows from the conditional probability mass functidescribing the mixture channel.

Since [®) is of the same form as the conditional probabiligssfunction describing the semi-deterministic
orthogonal relay channel, Propefily 1-Propéity 6 appliethéomixture relay channel as well, witty replaced
by Y5;.

In addition, we note the following three additional propestthat will be useful to our proof later on.

Property 7: For all input probability distribution® (x1, z2), (X1, X2,Y32) — (S, T, Y31, Ya1) — Yoo forms
a Markov chain.

Property8: For independent input probability distributions, i.@.(x1,22) = p(z1)p (z2), (X2,Y32) —
(S,T) — (Y21, Y31) forms a Markov chain.

Property9: The termI (X;;Y21Y31|ST) for the mixture relay channel is maximized by the marginaluin
probability distributionp (x1).

The proofs are given in AppendiX II.
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We now consider the proof of Theordrh 1 below:

Proof: 1) Achievability: This follows from a mixture of the compseand-forward strategy and the partial
decode-and-forward strategy. Substitutiig2 S, V £ ( and Y> £ Y5, in [4, Theorem 2] gives us the
achievable rate

R = sup  min {7 (X0 Vo Yan Yol SX0 ) + 1 (3 Yo Yo | Xa) T (Xa Xoi Ve Yao) - (7)
PX1X2Y21Y221721Y31K32
subject to the constraint
I(X2;Y51Y3|S) > 1 <Y21Y22;Y21\SX2Y31Y32) (8)

where the supremum is taken over all joint probability masxfions of the form

P (21, T2, Y21, Y22, o1, Y31, Y32) = P (71) p (¥2) P (Y21, Y22, Y31, Y32 |T1, T2) P (J21]22, Y1, Y22,5) . (9)

We setp (go1|z2, Y21, Y22, ) 10 be p(§21|x2,921,5) in @). Hence, the supremum is taken over all joint

probability mass functions of the form

P (21,72, Y21, Y22, Y21, Y31, ¥32) = P (1) P (22) P (Y21, Y22, Y31, ¥32|T1, T2) P (Yo1]22, y21, 5) - (10)

Since (Yag, Ya1, Y32) — (Xa, Y21, 5) — Yo, forms a Markov chain (this can be seen by inspection friom)(10)

the constraint[(8) is now given by
I(X2;Y31Y32|S) > 1 (5/'211/22;5721|5X2Y315%2)
=1 (5/21;5721|SX2Y31Y32) +1 (Y22;5721\5X2331Y31Y32)
=1 (Y21;5A/2l|5X2Y31Y32) . (11)
If H (Yo1|SX2Y31Y30) < I(X2;Y31Y35:]5), we obtain
R = min {1 (X1;Y21Y31Y32|SX3) + I (S;Y21Ya2]X2), I (X1X5;Y31Y32)} . (12)
If H(Y21]SX2Y51Y32) > I (Xs;Y3,Y32]S), we have for the first term of{(7)
1 (X1;Y21Y31Y32|5X2) + 1 (S;Y21Y22|X2)
=1 (X1;Y31Y32|5X5) + 1 <X1;?21|5X2Y31Y32) + I(S;Y21Y2|X5)

=1 (X1;Y31Y32|SXs) + H (5}21|5X2Y31Y32) - H (Y21|SX1X2Y31Y32) + I (S;Y21Y52]X2)

—

D1 (X0; Yo YaalSXa) + H (Yot SXaVinVaz) = H (Var S X1 XoVarYir Yoo ) + 1 (S5 Va1 Vas|X2)
=1 (X1;Y31Y32|SXo) + H <Y21|SX2Y31Y32) - H (Y21|SX2Y21Y31K32) + 1 (S5 Y21Ya2|X2)
=1 (X1;Y31Y32|SXo) + 1 <Y21; Y21|SX2Y31Y32) + 1 (S5 Ya1Ya2|X2)

@ I(X1;Y31Y32|SX2) + I (Xa;Y31Y32]S) + I (S; Ya1Ya2|X2)

= I (X1X2;Y31Y32[5) + I (S; Y21Ya2|X2)

© I (X1X2;Y31Y52]S) + I(S; X2Y21Y29)

(g) I (X1X2;Y31Y32]S) + 1 (5;Y31Y32)

=1 (X1X9;Y51Ys50) (13)
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where

(a) follows from the fact thay,; is a deterministic function of1, x2, y3; andyss,

(b) follows from the fact that ifH (Y21|SX2Y31Y32) > I(Xa;Y31Y352]S), there exists probability mass
functions of the form[{T0) such that(Xy; Ys, Yas|S) = I (Yzl; 1721|SX2Y31Y32> and

(c) follows from the fact that the input probability distutions are independent and

(d) follows from the fact thatS — (Xs,Y21,Y22) — (Y31,Y32) forms a Markov chain since is a
deterministic function ofts, y21 andyss.

We note thatl (X Xs; Y31Y32) = I (X1;Y31) + I (X2; Yaz2). This follows from the proof of[[9, Thm. 3] (see

[9 (37)]). We also note that

I (X1;Y21Y31Y325X3) + I (S;Ya1Yo2|X5)

=T (X1;Y32|SX2) + I (X1;Y21Y31|SX2Y30) + 1 (S;Y21Ya2]|X2)

@ I (X1;Y21Y31|SX2Y52) + I (S;Y21Ya2]|X5)

b
© (X1;Y21Y31|ST X2Y32) + I (S;Y21Ya2]Xo)

© I (X1;Y21Y3:1|ST) + 1 (S;Ya1Ya2|X2)

=1 (X1;Y21Y51|ST) + H (S| X2) — H (5] X2Y21Y22)

d
Q7 (X1;Y21Y5:1|ST) + H () (14)

where

(a) follows from the fact thatS, X;) — X» — Y3, forms a Markov chain (see Propeffy 2) and henke,

— (5, X2) — Y39 forms a Markov chain (follows from the weak union propertyMiirkov chains, see
[10, Sec. 1.1.5)),

(b) follows from the fact that is a deterministic function of; andyss,

(c) follows from the fact that for independent input probpidistributions (X5, Ys2) — (S,T) — (Y21, Y31)
forms a Markov chain (refer to Propefy 8) and the fact {8, Y32) — (X1,7) — (Y21, Y3;1) forms a
Markov chain for all input probability distributions (reféo PropertyB) and

(d) follows from the fact that the input probability distutions are independent and thats a deterministic
function of x5, y21 andyos.

Hence, a combination of the partial decode-and forwardtegiyaand the compress-and-forward strategy

achieves the rat¢](5) for the mixture relay channel and wheresupremum is taken over all independent input
probability distributions.

2) Converse: The converse follows from the cut-set uppendioBor the first term in[9, (10)], we obtain
I (X1;Y21Y29Y31Y39|X5)
W I (SX1; Yar Yoo Va1 Yo Xa)
=1 (X1;Y21Y20Y31 Y52 SXo) + 1 (S; Ya1Y22Y31Y32[ X5)
=1 (X1;Y22|Y21Y31Y325X0) + 1 (X3 Y2131 Y32[SXo) + 1 (S5 Y21Y22Y31 V32| Xo)

b
© I (X1; Y2 Y01Y51 Y32 5T Xo) + I (X1; Yo1Y31 Y52 SX0) + I (S5 Ya1Ya2Y31 V30| X5)
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© I (X1;Y21Y31Y32][SX5) + I (S;Y21Ya2|Xo) + 1 (S;Y31Y32]|X0Y21Y22)

d
D (X1; Vo1 Va1 Yaa | SXa) + I (S; Yar Yao| Xo)

=1 (X1;Y32|5X5) + I (X1;Y21Y31|5X2Y32) + I (S;Y21Ya2]X0)

© I (X1;Y21Y31|SXoY39) + I(S;Y21Y22|X2)

®)
= T (X15Y21Y31|STXoY32) + 1 (S;Y21Ya2|X2)

= H (Y21Y31|STX5Y39) — H (Y21Y31|ST X1 X0Y39) + I (S;Y21Y22|X2)

(f)
< H (Y21Y51|ST) — H (Y21Y31|ST X1 XoY39) + I (S; Y21Y22|X2)

9 [ (Y1 Ya1|ST) — H (Yo Va1 |[STX1) + I (S; Yy Yao| Xo)

= I (X1;Y21Y31|ST) + I (S;Y21Ya2|X2)

=1 (Xl, }/21Y31|ST) + H (S|X2) —H (S|X2Y21}/22)

d
@ I(X1;Y1Y31|ST) + H (S| X2)

L (X0 Yo Vi [ST) + H (5). (15)
where
(a) follows from the fact that is a deterministic function of,
(b) follows from the fact that is a deterministic function of, andyss,
(c) follows from the fact that X, X, Y32) — (S, T, Y31, Ya1) — Yao forms a Markov chain (see Property
[2),
(d) follows from the fact thatS — (X5,Y21,Y22) — (Y31,Y3) forms a Markov chain since is a
deterministic function ofc,, y2; andyss,
(e) follows from the fact thatS, X;) — X> — Y3, forms a Markov chain (see Propeffy 2) and henke,
— (5, X3) — Y3 forms a Markov chain (follows from the weak union propertyMiirkov chains, see
[10, Sec. 1.1.5)),
() follows from the fact that conditioning reduces entrogyd
(g) follows from the fact tha{ Xs, Y3s) — (X1,7T) — (Ya1,Y31) forms a Markov chain (Properfy 3) and
hence,(Xs,Yss) — (5, X1,T) — (Y21,Y31) forms a Markov chain since is a deterministic function
of z;.
We note thatl (Xy;Y2,Y31|ST)+ H (S) is maximized by the marginal probability distributipr{z;) (Property
and the fact that is a deterministic function af;). We also note that (f) may be replaced by an equality as
long as the input probability distributions are indeperid@mnoperty 8 and from the fact thatis a deterministic
function of ;). Hence, independent input probability distributions im@xe the first term in [[9, (10)]). We
may also show that independent input probability distidng maximizes the second term ifl([9, (10)]) (refer

to [9, (40)]) and is given by the second term fin (5). [ ]

APPENDIX I

PrROOF OFPROPERTIESIHNG

We first prove the following property that will be useful inetlest of the proofs.
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Property10: For all input probability distributiong (z1, z2), X1 — X — Y32 forms a Markov chain.
Proof: This follows from the conditional probability mass functi{g, (14)] describing the channel as seen
from the following equalities:

pysalr,za) = D Y p(ya, ys1,yselar, x2)

Y2€Y2 Y31 €Y1

= Z Z P (ysilz1) p (Y221, L, ys31) p (yse|@2, t) p (¢)

Y2€Y2 y31€YV31

p(ysalr2, ) p () Y plyslz) D p(yeler,tys)

Y31€YVs1 Y2€Y2

= p(ys2|z2,t) p(t)

@ P (Y32, t|x2)
b
(:) p(y32|x2). (16)

where

(a) follows from the fact thaf” is independent of{, and

(b) follows from the fact that is a deterministic function ofs andyss [9) (13)].

Property[l can be shown from the following equalities:

(a)
P (y3il|r1,t, 2, Y32) = P (ysilz1, T2, Y32)

_ p(ysilz1, 72, y32) p (Y32]|71, T2)
B p (ys2|z1, 22)
P (Y31, y3z|21, v2)
p (y32|x17 7)

Z P(y27y317y32|96179€2)
Y2E€Y2

p (y32|331, 962)

> p(ysile) p (y2ler, t,ys1) p (yse|ze, 1) p (1)
Y2€Y2

p (y32|:1:1, l’z)

p(ysilzy) p (yselw2, ) p(t) > p(yelwr,t,ys1)
Y2EY2

P (y32|r1, 22)
_ p(ysilz1) p (ys2|z2,t) p (t)
B p (ys2|w1, z2)
®) p(ysilz1) p (Y32, t|xe)
p (y3z|r1, 22)
(@)(e) P (ys1lz1) p (y3z|wa)
a P (y32|72)

= p (ys1]r1) (17)

where

(a) follows from the fact that is a deterministic function of, andyss ([9, (13)]),
(b) follows from the fact thaf" is independent ofX, and

(c) follows from the fact that{; — X, — Y3, forms a Markov chain (Properfy 110).
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Property{2 can be shown from the following equalities:

p (931, y32\9€1, 932)
P (y31|r1, 2)

Z P(yzay31ay32|$17$2)
Y2E€V2

p (y31 \xl, 332)

Y. p(ysilr) p (y2ler,t, ys1) p (ys2|xe, t) p (t)
Yy2€YV2

p(y32|x1,z2,y31) =

P (y31]21, T2)

p(ys2lz2,t) p (£) p (y31lz1) Do p(yelr,t,ys1)
Y2 EYV2

p (y3il|r1, 22)
_ P (ys2lz2, 1) p () p (ys1]z1)
B p (ys1|z1, z2)
(@) P (y32,t|r2) p (y31|r1)
B p(y31|a;1,:r:2)
() P (ys2|z2) p (ys1]z1)
 p(yailey, ao)
(o) P (y32]r2) p (y31]21)
B P (y31]71)

= p (y32|72) (18)

—~

where

(a) follows from the fact thaf is independent ofX5,
(b) follows from the fact that is a deterministic function of, andys, [9, (1)] and
(c) follows from the fact thatT, X, Y32) — X1 — Y3; forms a Markov chain (Properfy 1).

Property(B can be shown from the following equalities:

(a)
P (Y2, y31|71,t, T2, Yz2) = P (Yo, ysa |71, T2, Yso)

P (Y2, y31]71, T2, y32) p (y32]71, 2)

P (y32|r1, 22)
_ P (Y2, Y31, y32|21, ©2)
B p (y32|r1, 22)
~ p(ys1lz1) p (y2l71,t, y31) p (y32| 72, t) p (t)
B p (ys2|21, 22)
®) p(y31lz1) p (y2lr1,t,¥31) P (Y32, t|22)
B p(y32|$1,l‘2)
(@ P (y31]z1) p (y2|w1,t,y31) p (y32|72)
a p (ys2lz1, 22)
© p(yailz1) p (y2|z1,t,y31) p (Y32|22)
P (y32|72)

= p(ys1|m1) p (y2lz1,t, y31) (19)
where

(a) follows from the fact that is a deterministic function of, andyss [9) (13)],
(b) follows from the fact thaf” is independent of{; and

(c) follows from the fact thatX; — X> — Y3, forms a Markov chain (Properfy 1.0).
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Property(# can be shown from the following equalities:

(a)
D (Y2, ys1|t, x2, y32) = P (Y2, y31|22, y32)

P (Y2, Y31, T2, Y32)
p (22, y32)

~ Daiex, P(T1,72,Y2, Y31, Y32)
B P (72, Y32)
C Daiex PY2,Y31, Y3221, 22) p (21) P (22)
B p(22,Y32)
_ wex P(ysilz1) p(yalzi, toysi) p (yazlze, 1) p (1) p (21) p (22)
B p(72,y32)
) 2ozrex, P(Ys1]21) P (y2]z1, 8, y31) p (Y32, tlw2) p (1) p (22)
B p (2, y32)
(@) 2zreny P (W31]21) P (Y2]71, 8, y31) P (ys2]z2) P (21) p (22)
B P (72,Y32)
C Daiex Pysilz) p(y2]zi,t ys1) p (22, ys52) p (21)
a p (2, Y32)

> pysiler)p(yelz, t,ys1) p(21)
z1€EX

Z p(@1,y31) p (y2]21, T, y31)
T1EX]

)
= Z p (1,92, y31(t)

1 EX]

=p(y2,y31lt) (20)

—
s}

where

(a) follows from the fact that is a deterministic function of; andys. [9, (13)],
(b) follows from the fact thaf" is independent of{, and
(c) follows from the fact thaf” — X; — Y3; forms a Markov chain (Properfyl 1) and the fact thats

independent ofX;.

Property(h can be shown from the following equalities:

p(ys1,y32) = Z P (Y31, Ys2|21, 22) p (1) p (72)
T1,T2E€X X X

Z Z P (Y2, Y31, y32|x1, 22) p (1) p (22)

Z1,T2€X1 X X2 y2 X V2

> > pysiler) p (yale, tyst) p (ysalwa, £) p (8) p (21) p (22)
T1,T2E€EX X X2 Y2 X Va2

Yo plysilz)p(ysalws, t)p () p (@) p(x2) D p(yolar,t,ys)

Z1,T2E€X 1 X X2 Y2 X Y2

= > psile) p(ysalwa, ) p () p (1) p(w2)
T1,r2€X X X2

(a)
= ) p(ysle) p(ysa, tas) p (1) p(22)
T1,T2EXT X Xo

® Z P (ys1lz1) p (ysz|w2) p (21) p (72)

1,T2E€X1 X X
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= (y31) p (y32) (21)
where

(a) follows from the fact thaf” is independent ofX, and

(b) follows from the fact that is a deterministic function ofs andyso [9) (13)].

To prove Property16, we first consider the tefii(Y>Y5,|7") which depends only on the probability distri-
butionp (¢) (which is independent aX; and X5) and the conditional probability distributian(ys, y31|t). We
note that the conditional probability distributign(ys, y31]t) depends on the marginal probability distribution
p(z1) and not on the joint probability distributiop(x,22) from the following equalities:

p( y27y31\t Z Z (y2, ys1lt, w1, 22) p (1, 22)
T1EXL T2EX;

Z Z (Y2, y31lt, z1) p (z1, 22)

T1EX T2E€EX,

= Z P (Y2, ys1lt, x1) p (1) Z p(22|z1)

r1€X T2 EAX2

> p(y2sysilt. z1)p (1) . (22)

T1E€X

where

(a) follows from the fact thaf” is independent ofX; and X, and

(b) follows from the fact thatX, — (X;,T) — (Y3, Y31) forms a Markov chain (Properfy 3).

Hence, the termH (Y>Y31|T) is maximized by the marginal input probability distributip (z1). Simi-
larly, the term H (Y2Y3:|TX;) is maximized by the marginal input probability distributip (x,). There-
fore, I (X1;Y2Y51|T) is maximized by the marginal input probability distributip (x;). We can likewise
prove thatl (X1;Y3;) is maximized by the marginal input probability distributip (z;) from the fact that
Xo — X7 — Y3, forms a Markov chain (Properfy 1). We can also prove th@k,; Y3,) is maximized by
the marginal input probability distributiop (z2) from the fact thatX; — X, — Y3, forms a Markov chain

(Property2).

APPENDIXII

PrROOF OFPROPERTIES7HI

Property(¥ can be shown from the following equalities:

p(s,t, 21,22, Y21, Y22, Y31, Y32)
p(s,t, 21,22, Y21, Y31, Y32)
(@) P (21,2, Y21, Y22, Y31, Y32)
— p (a1, 2, Y21, Ys1, Ys2)
®) P (Ys1lz1) p (Y21]w1,, y31) p (Y2215, b, ys1, Y21) P (ysa|z2, 1) p () p (21, 22)
p (ys1lz1) p (Y21l b, ys1) p (ysz|@2,t) p (1) p (21, 2)

P (y22!8,t, 1, T2, Y21, Y31, Y32) =

= p (y22|5,t, Y31, Y21) (23)
where

(a) follows from the fact that is a deterministic function of; andt is a deterministic function of, and

y32 and
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(b) follows from the conditional probability mass functidiescribing the mixture channel and frofd (6).

Property{8 can be shown from the following equalities:

(a)
P (Y2,y31l5,t, T2, Y32) = P (Y2, ys1ls, v2, y32)

— p(y27y31,373727y32)

p(s,72,Y32)
_ Zmleffl(s)p(saxlvI27y2ay317y32)
B p(s,72,Y32)
(b Zzleffl(s)l’(xl,xz,y2,y31,y32)
a p(s,72,Y32)
 aesy (o) P (W2 Y31, ys2len, w2) p (1) p (22)
a p(s,22,Y32)
 Dwves (s P Wsilma) p (yalwn, tys) p (ysalwa, ) p (1) p (21) p (22)
- p (8,72, Y32)
(©) 2mref () P Warl1) p (yalw, 8, ys1) p (ysa, tle) p(21) p (22)
- p(s,72,Y32)
(@) 2arefi(s) P Ws1l21) P (y2l1, 8, y31) p (yszlwz) p (1) p (22)
- P (s,72,Y32)
_ leeffl(s)p(yzn\xl)l?(y2|$17tay31)p(3327y32)p(£1)
- p(s,72,Y32)

(@) 2zrep () P Wa1l21) p (y2l1, 8, y31) p (22, y32) p (1)
- p(s)p (22, y32)
Y ores(s) P Ws1lz) p (y2lw, £, ys1) p (1)
p(s)

®) Zzleffl(s)P(Z/31|=’Cla5)29(y2\xl7sat,y31)p(ﬂfl7$)
B p(s)
© Zmerio P Wk £ O aln, 5 L ys) (o, 5l
- p(s)
B leefl_l(s)p(s7xl7y27y31|t)
B p(s)
_ P (8, Y2, y31|t)
p(s)
< p (g2, yaals, ) (24)

where

(a) follows from the fact that is a deterministic function of, andyss,

(b) follows from the fact thas is a deterministic function of 1,

(c) follows from the fact thafl’ is independent ofX5,

(d) follows from the fact that the input probability distutions are independent and from the fact that
X; — X, — Y3, forms a Markov chain (Properfy 2) and

(e) follows from the fact tha” — X; — Y3; forms a Markov chain (Properfyl 1) and from the fact tfat
is independent ofX; and hence is independent 6f

To prove Property]9, we first consider the tef(Ys; Y31|.ST') which depends only on the probability distribu-

tionp (¢t) p (s) (T is independent of; and X5) and the conditional probability distributign(ys1, ys1|s,t). We
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note that the conditional probability distributigr(y=1, ys1|s, t) depends on the marginal probability distribution

p(z1) and not on the joint probability distributiop(x;,x2) from the following equalities:

p (Y21, ys1]s, 1) = Z Z p (Y21, ys1]s, t, 21, x2) p (21, 225, 1)
T1E€X T2€X>

(a)(b)
= Z Zp(ym,ysl\s,f,$1)p($1>$2|8)

T1E€EX] T2€X,

> p(yarysils txa)p(zals) Y p(walar,s)

T1EX] T2 €EAX2

> (Y2 ysls,t,za)p(za]s). (25)
z1€EX

where

(a) follows from the fact thaf” is independent ofX; and X, and

(b) follows from the fact thatXs — (X;,T) — (Y21, Y31) forms a Markov chain (Properfy 3) and the fact

that s is a deterministic function of;.

Hence, the ternf (Y»1Y3|ST) is maximized by the marginal input probability distributip (z1). Similarly,

the termH (Y21Y3:|ST X1) is maximized by the marginal input probability distributip (z1).

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]
(9]
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