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Abstract

The relay channel consists of a transmitter inputx1, a relay inputx2, a relay outputy2 and a receiver output

y3. In this report, we combine a degraded semi-deterministic relay channelwith a semi-deterministic orthogonal

relay channel to obtain a new mixture relay channel. For the new mixture relay channel, a combination of the

compress-and-forward strategy and the partial decode-and-forward strategy achieves the capacity.

I. I NTRODUCTION

The discrete-memoryless relay channel consists of four sets—X1, X2, Y2, Y3—and a collection of conditional

probability mass functionsp (., .|x1, x2) on Y2 × Y3, one for each(x1, x2) ∈ X1 × X2. The transmitter input

is denoted byx1 ∈ X1, the relay input byx2 ∈ X2 , the relay output byy2 ∈ Y2 and the receiver output by

y3 ∈ Y3.

A
(

2NR, N
)

code for a relay channel without feedback consists of a set ofintegersW =
{

1, 2, ...,
⌊

2NR
⌋}

,

an encoding function

e :
{

1, 2, ...,
⌊

2NR
⌋}

→ XN
1

a set of relay functions{Ψn}
n=N

n=1 such that

Ψn : Yn−1
2 → X2, 1 ≤ n ≤ N

and a decoding function

d : YN
3 →

{

1, 2, ...,
⌊

2NR
⌋}

.

The relay is causal in nature. Hence, the input of the relayx2n is allowed to depend only on the past outputs

of the relayy21, y22, ..., y2n−1. If the messagew ∈ W is sent, let

λ (w) = Pr
{

d
(

Y N
3

)

6= w|w sent
}

denote the conditional probability of error. The average probability of error is defined by

P (N)
e =

1

⌊2NR⌋

∑

w

λ (w) .
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The probability of error is calculated under the uniform distribution over the codewordsw ∈ W. The rateR

is said to be achievable by the relay channel if there exists asequence of
(

2NR, N
)

codes withP (N)
e → 0 as

N → ∞. The capacityC of a relay channel is the supremum of the set of achievable rates.

For a relay channel with causal and noiseless relay-transmitter feedback, the only difference is that the

transmitter consists of a set of encoding functions{Ξn}
n=N

n=1 such that

Ξn : W ×Yn−1
2 → X1, 1 ≤ n ≤ N.

The relay channel was first introduced by van der Meulen in [1], [2]. Cover & El Gamal established two

fundamental coding theorems for the relay channel in an important paper [3]. In addition, these two coding

theorems were combined in the same paper to give the best lower bound for the capacity of a general relay

channel [3, Theorem 7]. Recently, Chong et al. determined a potentially larger achievable rate in [4, Theorem

2]. In particular, they determined that the following rate is achievable for any relay channel:

RCMG = supmin







I
(

X1; Ŷ2Y3|UX2

)

+ I (U ;Y2|V X2)

I (X1X2;Y3)− I
(

Y2; Ŷ2|UX1X2Y3

)







(1)

where the supremum is taken over all joint probability mass functions of the form

p (v, u, x1, x2, y2, ŷ2, y3) = p (v) p (u|v) p (x1|u) p (x2|v) p (y2, y3|x1, x2) p (ŷ2|x2, y2, u) (2)

and subject to the constraint

I (X2;Y3|UV ) ≥ I
(

Ŷ2;Y2|UX2Y3

)

. (3)

The capacity of the relay channel has been determined for thefollowing special cases:

1) the degraded relay channel, the reversely degraded relaychannel and the relay channel with causal

noiseless feedback from the receiver to the relay [3];

2) the semideterministic relay channel [5];

3) a class of relay channels with orthogonal components [6];

4) a class of modulo-sum relay channels [7];

5) a class of deterministic relay channels [8].

However, the capacity of the general relay channel remains unknown. The achievability of the above classes

of relay channels follows directly from appropriate substitutions for the auxiliary random variables in [3, Th.

7]. Moreover, except for the class of modulo-sum relay channels [7], the capacity of all the other classes of

relay channels meet the cut-set upper bound. The question remains as to whether there exists other classes of

relay channels where the lower bound given by [3, Th. 7] meetsthe cut-set upper bound.

In [9], we answered the question affirmatively by determining the capacity of three new classes of relay

channels:

• The first class of relay channels corresponds closely to the degraded relay channels considered by Cover and

El Gamal. However, for the first class of relay channels, the output of the relayy2 depends probabilistically

only on s, x2 andy3 wheres is a deterministic function ofx1, i.e., s = f1 (x1). In addition, we require

that S → (X2, Y2) → Y3 forms a Markov chain for all input probability distributions p (x1, x2). If the

deterministic functionf1 is not a one-to-one mapping, the class of degraded semi-deterministic relay
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channels strictly contains the class of degraded relay channels. The capacity for the degraded semi-

deterministic relay channel is achieved by the partial decode-and-forward strategy.

• The second class of relay channels that we consider is the class of semi-deterministic orthogonal relay

channels. There are orthogonal channels from the transmitter/relay to the receiver and the output of the

relayy2 is a deterministic function ofx1, x2 andy3. Furthermore, the capacity cut-set upper bound for this

class of relay channels is maximized by independent input probability distributions and can be achieved

by the compress-and-forward strategy. The class of semi-deterministic orthogonal relay channels strictly

contains the class of deterministic relay channels considered by Kim.

• The third class of relay channels also corresponds closely to the deterministic relay channel considered by

Kim. However, instead of having a noiseless relay receiver link, we have a causal and noiseless feedback

from the relay to the transmitter. Furthermore, instead of requiring the output of the relayy2 to be a

deterministic function ofx2 andy3, we require the output of the relayy2 to be a deterministic function of

x1, x2 and y3. The capacity for the class of semi-deterministic relay channels with causal and noiseless

relay-transmitter feedback can be achieved by the hash-and-forward strategy.

In this report, we combine the first two classes of semi-deterministic relay channels together to obtain new

channels whose capacity can also be determined.

II. CAPACITY REGION OF A NEW CLASS OF MIXTURE RELAY CHANNELS

Let us first describe the class of mixture relay channels below.

Definition 1: The mixture relay channel has two relay outputs—y21 andy22 and also two receiver outputs—

y31 andy32. Furthermore, the class of mixture relay channels satisfiesthe following conditions:

• The conditional probability mass function describing the channel is given by

p (y21, y22, y31, y32|x1, x2) = p (y31|x1) p (y21|x1, t, y31) p (y22|s, t, y31, y21) p (y32|x2, t) p (t) (4)

wheres is a deterministic function ofx1, i.e., s = f1 (x1) andT is independent of the inputsX1 andX2,

• s is a deterministic functionx2, y21 andy22, i.e., s = f2 (x2, y21, y22),

• t is a deterministic function ofx2 andy32, i.e., t = f3 (x2, y32),

• and thaty21 is a deterministic function ofx1, x2, y31 andy32, i.e., y21 = f4 (x1, x2, y31, y32).

We note that this is strictly neither a degraded semi-deterministic relay channel (X1 → (S,X2, Y3) → Y21

does not form a Markov chain) nor a semi-deterministic orthogonal relay channel (y22 6= f4 (x1, x2, y31, y32)).

In fact, this is a mixture of the degraded semi-deterministic relay channel and the semi-deterministic orthogonal

relay channel.

The capacity of the class of mixture relay channels described in Definition 1 is given by the following

theorem:

Theorem1: The capacity of the mixture relay channel is given by

C4 = sup
PX1X2

{I (X1;Y21Y31|ST ) +H (S) , I (X1;Y31) + I (X2;Y32)} (5)
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where the supremum is taken over all independent input probability distributions.

We first reproduce [9, Property 1-Property 6] for the class ofsemi-deterministic orthogonal relay channels

below for convenience.

Property1: For all input probability distributionsp (x1, x2), (T,X2, Y32) → X1 → Y31 forms a Markov

chain.

Property2: For all input probability distributionsp (x1, x2), (X1, Y31) → X2 → Y32 forms a Markov chain.

Property3: For all input probability distributionsp (x1, x2), (X2, Y32) → (X1, T ) → (Y2, Y31) forms a

Markov chain.

Property4: For independent input probability distributions, i.e.,p (x1, x2) = p (x1) p (x2), (X2, Y32) →

T → (Y2, Y31) forms a Markov chain.

Property5: For independent input probability distributions, i.e.,p (x1, x2) = p (x1) p (x2), Y31 andY32 are

independent.

Property6: The termsI (X1;Y2Y31|T ) andI (X1;Y31) for the semi-deterministic orthogonal relay channel is

maximized by the marginal input probability distributionp (x1). The termI (X2;Y32) for the semi-deterministic

orthogonal relay channel is maximized by the marginal inputprobability distributionp (x2).

The proofs are given in Appendix I.

Next, we note that that for the mixture relay channel,p (y21, y31, y32|x1, x2) is given by

∑

y22∈Y22

p (y21, y22, y31, y32|x1, x2)
(a)
=

∑

y22∈Y22

p (y31|x1) p (y21|x1, t, y31) p (y22|s, t, y31, y21) p (y32|x2, t) p (t)

= p (y31|x1) p (y21|x1, t, y31) p (y32|x2, t) p (t)
∑

y22∈Y22

p (y22|s, t, y31, y21)

= p (y31|x1) p (y21|x1, t, y31) p (y32|x2, t) p (t) (6)

where

(a) follows from the conditional probability mass functiondescribing the mixture channel.

Since (6) is of the same form as the conditional probability mass function describing the semi-deterministic

orthogonal relay channel, Property 1-Property 6 applies tothe mixture relay channel as well, withY2 replaced

by Y21.

In addition, we note the following three additional properties that will be useful to our proof later on.

Property7: For all input probability distributionsp (x1, x2), (X1, X2, Y32) → (S, T, Y31, Y21) → Y22 forms

a Markov chain.

Property8: For independent input probability distributions, i.e.,p (x1, x2) = p (x1) p (x2), (X2, Y32) →

(S, T ) → (Y21, Y31) forms a Markov chain.

Property9: The termI (X1;Y21Y31|ST ) for the mixture relay channel is maximized by the marginal input

probability distributionp (x1).

The proofs are given in Appendix II.
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We now consider the proof of Theorem 1 below:

Proof: 1) Achievability: This follows from a mixture of the compress-and-forward strategy and the partial

decode-and-forward strategy. SubstitutingU , S, V , ∅ and Ŷ2 , Ŷ21 in [4, Theorem 2] gives us the

achievable rate

R = sup
P

X1X2Y21Y22Ŷ21Y31Y32

min
{

I
(

X1; Ŷ21Y31Y32|SX2

)

+ I (S;Y21Y22|X2) , I (X1X2;Y31Y32)
}

(7)

subject to the constraint

I (X2;Y31Y32|S) ≥ I
(

Y21Y22; Ŷ21|SX2Y31Y32

)

(8)

where the supremum is taken over all joint probability mass functions of the form

p (x1, x2, y21, y22, ŷ21, y31, y32) = p (x1) p (x2) p (y21, y22, y31, y32|x1, x2) p (ŷ21|x2, y21, y22, s) . (9)

We set p (ŷ21|x2, y21, y22, s) to be p (ŷ21|x2, y21, s) in (9). Hence, the supremum is taken over all joint

probability mass functions of the form

p (x1, x2, y21, y22, ŷ21, y31, y32) = p (x1) p (x2) p (y21, y22, y31, y32|x1, x2) p (ŷ21|x2, y21, s) . (10)

Since(Y22, Y31, Y32) → (X2, Y21, S) → Ŷ21 forms a Markov chain (this can be seen by inspection from (10)),

the constraint (8) is now given by

I (X2;Y31Y32|S) ≥ I
(

Y21Y22; Ŷ21|SX2Y31Y32

)

= I
(

Y21; Ŷ21|SX2Y31Y32

)

+ I
(

Y22; Ŷ21|SX2Y21Y31Y32

)

= I
(

Y21; Ŷ21|SX2Y31Y32

)

. (11)

If H (Y21|SX2Y31Y32) ≤ I (X2;Y31Y32|S), we obtain

R = min {I (X1;Y21Y31Y32|SX2) + I (S;Y21Y22|X2) , I (X1X2;Y31Y32)} . (12)

If H (Y21|SX2Y31Y32) > I (X2;Y31Y32|S), we have for the first term of (7)

I
(

X1; Ŷ21Y31Y32|SX2

)

+ I (S;Y21Y22|X2)

= I (X1;Y31Y32|SX2) + I
(

X1; Ŷ21|SX2Y31Y32

)

+ I (S;Y21Y22|X2)

= I (X1;Y31Y32|SX2) +H
(

Ŷ21|SX2Y31Y32

)

−H
(

Ŷ21|SX1X2Y31Y32

)

+ I (S;Y21Y22|X2)

(a)
= I (X1;Y31Y32|SX2) +H

(

Ŷ21|SX2Y31Y32

)

−H
(

Ŷ21|SX1X2Y21Y31Y32

)

+ I (S;Y21Y22|X2)

= I (X1;Y31Y32|SX2) +H
(

Ŷ21|SX2Y31Y32

)

−H
(

Ŷ21|SX2Y21Y31Y32

)

+ I (S;Y21Y22|X2)

= I (X1;Y31Y32|SX2) + I
(

Y21; Ŷ21|SX2Y31Y32

)

+ I (S;Y21Y22|X2)

(b)
= I (X1;Y31Y32|SX2) + I (X2;Y31Y32|S) + I (S;Y21Y22|X2)

= I (X1X2;Y31Y32|S) + I (S;Y21Y22|X2)

(c)
= I (X1X2;Y31Y32|S) + I (S;X2Y21Y22)

(d)

≥ I (X1X2;Y31Y32|S) + I (S;Y31Y32)

= I (X1X2;Y31Y32) (13)
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where

(a) follows from the fact thaty21 is a deterministic function ofx1, x2, y31 andy32,

(b) follows from the fact that ifH (Y21|SX2Y31Y32) > I (X2;Y31Y32|S), there exists probability mass

functions of the form (10) such thatI (X2;Y31Y32|S) = I
(

Y21; Ŷ21|SX2Y31Y32

)

and

(c) follows from the fact that the input probability distributions are independent and

(d) follows from the fact thatS → (X2, Y21, Y22) → (Y31, Y32) forms a Markov chain sinces is a

deterministic function ofx2, y21 andy22.

We note thatI (X1X2;Y31Y32) = I (X1;Y31)+ I (X2;Y32). This follows from the proof of [9, Thm. 3] (see

[9, (37)]). We also note that

I (X1;Y21Y31Y32|SX2) + I (S;Y21Y22|X2)

= I (X1;Y32|SX2) + I (X1;Y21Y31|SX2Y32) + I (S;Y21Y22|X2)

(a)
= I (X1;Y21Y31|SX2Y32) + I (S;Y21Y22|X2)

(b)
= I (X1;Y21Y31|STX2Y32) + I (S;Y21Y22|X2)

(c)
= I (X1;Y21Y31|ST ) + I (S;Y21Y22|X2)

= I (X1;Y21Y31|ST ) +H (S|X2)−H (S|X2Y21Y22)

(d)
= I (X1;Y21Y31|ST ) +H (S) (14)

where

(a) follows from the fact that(S,X1) → X2 → Y32 forms a Markov chain (see Property 2) and hence,X1

→ (S,X2) → Y32 forms a Markov chain (follows from the weak union property ofMarkov chains, see

[10, Sec. 1.1.5]),

(b) follows from the fact thatt is a deterministic function ofx2 andy32,

(c) follows from the fact that for independent input probability distributions(X2, Y32) → (S, T ) → (Y21, Y31)

forms a Markov chain (refer to Property 8) and the fact that(X2, Y32) → (X1, T ) → (Y21, Y31) forms a

Markov chain for all input probability distributions (refer to Property 3) and

(d) follows from the fact that the input probability distributions are independent and thats is a deterministic

function of x2, y21 andy22.

Hence, a combination of the partial decode-and forward strategy and the compress-and-forward strategy

achieves the rate (5) for the mixture relay channel and wherethe supremum is taken over all independent input

probability distributions.

2) Converse: The converse follows from the cut-set upper bound. For the first term in [9, (10)], we obtain

I (X1;Y21Y22Y31Y32|X2)

(a)
= I (SX1;Y21Y22Y31Y32|X2)

= I (X1;Y21Y22Y31Y32|SX2) + I (S;Y21Y22Y31Y32|X2)

= I (X1;Y22|Y21Y31Y32SX2) + I (X1;Y21Y31Y32|SX2) + I (S;Y21Y22Y31Y32|X2)

(b)
= I (X1;Y22|Y21Y31Y32STX2) + I (X1;Y21Y31Y32|SX2) + I (S;Y21Y22Y31Y32|X2)
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(c)
= I (X1;Y21Y31Y32|SX2) + I (S;Y21Y22|X2) + I (S;Y31Y32|X2Y21Y22)

(d)
= I (X1;Y21Y31Y32|SX2) + I (S;Y21Y22|X2)

= I (X1;Y32|SX2) + I (X1;Y21Y31|SX2Y32) + I (S;Y21Y22|X2)

(e)
= I (X1;Y21Y31|SX2Y32) + I (S;Y21Y22|X2)

(b)
= I (X1;Y21Y31|STX2Y32) + I (S;Y21Y22|X2)

= H (Y21Y31|STX2Y32)−H (Y21Y31|STX1X2Y32) + I (S;Y21Y22|X2)

(f)

≤ H (Y21Y31|ST )−H (Y21Y31|STX1X2Y32) + I (S;Y21Y22|X2)

(g)
= H (Y21Y31|ST )−H (Y21Y31|STX1) + I (S;Y21Y22|X2)

= I (X1;Y21Y31|ST ) + I (S;Y21Y22|X2)

= I (X1;Y21Y31|ST ) +H (S|X2)−H (S|X2Y21Y22)

(d)
= I (X1;Y21Y31|ST ) +H (S|X2)

(f)

≤ I (X1;Y21Y31|ST ) +H (S) . (15)

where

(a) follows from the fact thats is a deterministic function ofx1,

(b) follows from the fact thatt is a deterministic function ofx2 andy32,

(c) follows from the fact that(X1, X2, Y32) → (S, T, Y31, Y21) → Y22 forms a Markov chain (see Property

7),

(d) follows from the fact thatS → (X2, Y21, Y22) → (Y31, Y32) forms a Markov chain sinces is a

deterministic function ofx2, y21 andy22,

(e) follows from the fact that(S,X1) → X2 → Y32 forms a Markov chain (see Property 2) and hence,X1

→ (S,X2) → Y32 forms a Markov chain (follows from the weak union property ofMarkov chains, see

[10, Sec. 1.1.5]),

(f) follows from the fact that conditioning reduces entropyand

(g) follows from the fact that(X2, Y32) → (X1, T ) → (Y21, Y31) forms a Markov chain (Property 3) and

hence,(X2, Y32) → (S,X1, T ) → (Y21, Y31) forms a Markov chain sinces is a deterministic function

of x1.

We note thatI (X1;Y21Y31|ST )+H (S) is maximized by the marginal probability distributionp (x1) (Property

9 and the fact thats is a deterministic function ofx1). We also note that (f) may be replaced by an equality as

long as the input probability distributions are independent (Property 8 and from the fact thats is a deterministic

function of x1). Hence, independent input probability distributions maximize the first term in ([9, (10)]). We

may also show that independent input probability distributions maximizes the second term in ([9, (10)]) (refer

to [9, (40)]) and is given by the second term in (5).

APPENDIX I

PROOF OFPROPERTIES1-6

We first prove the following property that will be useful in the rest of the proofs.
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Property10: For all input probability distributionsp (x1, x2), X1 → X2 → Y32 forms a Markov chain.

Proof: This follows from the conditional probability mass function [9, (14)] describing the channel as seen

from the following equalities:

p (y32|x1, x2) =
∑

y2∈Y2

∑

y31∈Y31

p (y2, y31, y32|x1, x2)

=
∑

y2∈Y2

∑

y31∈Y31

p (y31|x1) p (y2|x1, t, y31) p (y32|x2, t) p (t)

= p (y32|x2, t) p (t)
∑

y31∈Y31

p (y31|x1)
∑

y2∈Y2

p (y2|x1, t, y31)

= p (y32|x2, t) p (t)

(a)
= p (y32, t|x2)

(b)
= p (y32|x2) . (16)

where

(a) follows from the fact thatT is independent ofX2 and

(b) follows from the fact thatt is a deterministic function ofx2 andy32 [9, (13)].

Property 1 can be shown from the following equalities:

p (y31|x1, t, x2, y32)
(a)
= p (y31|x1, x2, y32)

=
p (y31|x1, x2, y32) p (y32|x1, x2)

p (y32|x1, x2)

=
p (y31, y32|x1, x2)

p (y32|x1, x2)

=

∑

y2∈Y2

p (y2, y31, y32|x1, x2)

p (y32|x1, x2)

=

∑

y2∈Y2

p (y31|x1) p (y2|x1, t, y31) p (y32|x2, t) p (t)

p (y32|x1, x2)

=

p (y31|x1) p (y32|x2, t) p (t)
∑

y2∈Y2

p (y2|x1, t, y31)

p (y32|x1, x2)

=
p (y31|x1) p (y32|x2, t) p (t)

p (y32|x1, x2)

(b)
=

p (y31|x1) p (y32, t|x2)

p (y32|x1, x2)

(a)(c)
=

p (y31|x1) p (y32|x2)

p (y32|x2)

= p (y31|x1) (17)

where

(a) follows from the fact thatt is a deterministic function ofx2 andy32 ([9, (13)]),

(b) follows from the fact thatT is independent ofX2 and

(c) follows from the fact thatX1 → X2 → Y32 forms a Markov chain (Property 10).
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Property 2 can be shown from the following equalities:

p (y32|x1, x2, y31) =
p (y31, y32|x1, x2)

p (y31|x1, x2)

=

∑

y2∈Y2

p (y2, y31, y32|x1, x2)

p (y31|x1, x2)

=

∑

y2∈Y2

p (y31|x1) p (y2|x1, t, y31) p (y32|x2, t) p (t)

p (y31|x1, x2)

=

p (y32|x2, t) p (t) p (y31|x1)
∑

y2∈Y2

p (y2|x1, t, y31)

p (y31|x1, x2)

=
p (y32|x2, t) p (t) p (y31|x1)

p (y31|x1, x2)

(a)
=

p (y32, t|x2) p (y31|x1)

p (y31|x1, x2)

(b)
=

p (y32|x2) p (y31|x1)

p (y31|x1, x2)

(c)
=

p (y32|x2) p (y31|x1)

p (y31|x1)

= p (y32|x2) (18)

where

(a) follows from the fact thatT is independent ofX2,

(b) follows from the fact thatt is a deterministic function ofx2 andy32 [9, (1)] and

(c) follows from the fact that(T,X2, Y32) → X1 → Y31 forms a Markov chain (Property 1).

Property 3 can be shown from the following equalities:

p (y2, y31|x1, t, x2, y32)
(a)
= p (y2, y31|x1, x2, y32)

=
p (y2, y31|x1, x2, y32) p (y32|x1, x2)

p (y32|x1, x2)

=
p (y2, y31, y32|x1, x2)

p (y32|x1, x2)

=
p (y31|x1) p (y2|x1, t, y31) p (y32|x2, t) p (t)

p (y32|x1, x2)

(b)
=

p (y31|x1) p (y2|x1, t, y31) p (y32, t|x2)

p (y32|x1, x2)

(a)
=

p (y31|x1) p (y2|x1, t, y31) p (y32|x2)

p (y32|x1, x2)

(c)
=

p (y31|x1) p (y2|x1, t, y31) p (y32|x2)

p (y32|x2)

= p (y31|x1) p (y2|x1, t, y31) (19)

where

(a) follows from the fact thatt is a deterministic function ofx2 andy32 [9, (13)],

(b) follows from the fact thatT is independent ofX2 and

(c) follows from the fact thatX1 → X2 → Y32 forms a Markov chain (Property 10).
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Property 4 can be shown from the following equalities:

p (y2, y31|t, x2, y32)
(a)
= p (y2, y31|x2, y32)

=
p (y2, y31, x2, y32)

p (x2, y32)

=

∑

x1∈X1
p (x1, x2, y2, y31, y32)

p (x2, y32)

=

∑

x1∈X1
p (y2, y31, y32|x1, x2) p (x1) p (x2)

p (x2, y32)

=

∑

x1∈X1
p (y31|x1) p (y2|x1, t, y31) p (y32|x2, t) p (t) p (x1) p (x2)

p (x2, y32)

(b)
=

∑

x1∈X1
p (y31|x1) p (y2|x1, t, y31) p (y32, t|x2) p (x1) p (x2)

p (x2, y32)

(a)
=

∑

x1∈X1
p (y31|x1) p (y2|x1, t, y31) p (y32|x2) p (x1) p (x2)

p (x2, y32)

=

∑

x1∈X1
p (y31|x1) p (y2|x1, t, y31) p (x2, y32) p (x1)

p (x2, y32)

=
∑

x1∈X1

p (y31|x1) p (y2|x1, t, y31) p (x1)

=
∑

x1∈X1

p (x1, y31) p (y2|x1, t, y31)

(c)
=

∑

x1∈X1

p (x1, y2, y31|t)

= p (y2, y31|t) (20)

where

(a) follows from the fact thatt is a deterministic function ofx2 andy32 [9, (13)],

(b) follows from the fact thatT is independent ofX2 and

(c) follows from the fact thatT → X1 → Y31 forms a Markov chain (Property 1) and the fact thatT is

independent ofX1.

Property 5 can be shown from the following equalities:

p (y31, y32) =
∑

x1,x2∈X1×X2

p (y31, y32|x1, x2) p (x1) p (x2)

=
∑

x1,x2∈X1×X2

∑

y2×Y2

p (y2, y31, y32|x1, x2) p (x1) p (x2)

=
∑

x1,x2∈X1×X2

∑

y2×Y2

p (y31|x1) p (y2|x1, t, y31) p (y32|x2, t) p (t) p (x1) p (x2)

=
∑

x1,x2∈X1×X2

p (y31|x1) p (y32|x2, t) p (t) p (x1) p (x2)
∑

y2×Y2

p (y2|x1, t, y31)

=
∑

x1,x2∈X1×X2

p (y31|x1) p (y32|x2, t) p (t) p (x1) p (x2)

(a)
=

∑

x1,x2∈X1×X2

p (y31|x1) p (y32, t|x2) p (x1) p (x2)

(b)
=

∑

x1,x2∈X1×X2

p (y31|x1) p (y32|x2) p (x1) p (x2)
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= p (y31) p (y32) (21)

where

(a) follows from the fact thatT is independent ofX2 and

(b) follows from the fact thatt is a deterministic function ofx2 andy32 [9, (13)].

To prove Property 6, we first consider the termH (Y2Y31|T ) which depends only on the probability distri-

bution p (t) (which is independent ofX1 andX2) and the conditional probability distributionp (y2, y31|t). We

note that the conditional probability distributionp (y2, y31|t) depends on the marginal probability distribution

p (x1) and not on the joint probability distributionp (x1, x2) from the following equalities:

p (y2, y31|t)
(a)
=

∑

x1∈X1

∑

x2∈X2

p (y2, y31|t, x1, x2) p (x1, x2)

(b)
=

∑

x1∈X1

∑

x2∈X2

p (y2, y31|t, x1) p (x1, x2)

=
∑

x1∈X1

p (y2, y31|t, x1) p (x1)
∑

x2∈X2

p (x2|x1)

=
∑

x1∈X1

p (y2, y31|t, x1) p (x1) . (22)

where

(a) follows from the fact thatT is independent ofX1 andX2 and

(b) follows from the fact thatX2 → (X1, T ) → (Y2, Y31) forms a Markov chain (Property 3).

Hence, the termH (Y2Y31|T ) is maximized by the marginal input probability distribution p (x1). Simi-

larly, the termH (Y2Y31|TX1) is maximized by the marginal input probability distribution p (x1). There-

fore, I (X1;Y2Y31|T ) is maximized by the marginal input probability distribution p (x1). We can likewise

prove thatI (X1;Y31) is maximized by the marginal input probability distribution p (x1) from the fact that

X2 → X1 → Y31 forms a Markov chain (Property 1). We can also prove thatI (X2;Y32) is maximized by

the marginal input probability distributionp (x2) from the fact thatX1 → X2 → Y32 forms a Markov chain

(Property 2).

APPENDIX II

PROOF OFPROPERTIES7-9

Property 7 can be shown from the following equalities:

p (y22|s, t, x1, x2, y21, y31, y32) =
p (s, t, x1, x2, y21, y22, y31, y32)

p (s, t, x1, x2, y21, y31, y32)

(a)
=

p (x1, x2, y21, y22, y31, y32)

p (x1, x2, y21, y31, y32)

(b)
=

p (y31|x1) p (y21|x1, t, y31) p (y22|s, t, y31, y21) p (y32|x2, t) p (t) p (x1, x2)

p (y31|x1) p (y21|x1, t, y31) p (y32|x2, t) p (t) p (x1, x2)

= p (y22|s, t, y31, y21) (23)

where

(a) follows from the fact thats is a deterministic function ofx1 and t is a deterministic function ofx2 and

y32 and
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(b) follows from the conditional probability mass functiondescribing the mixture channel and from (6).

Property 8 can be shown from the following equalities:

p (y2, y31|s, t, x2, y32)
(a)
= p (y2, y31|s, x2, y32)

=
p (y2, y31, s, x2, y32)

p (s, x2, y32)

=

∑

x1∈f
−1

1
(s) p (s, x1, x2, y2, y31, y32)

p (s, x2, y32)

(b)
=

∑

x1∈f
−1

1
(s) p (x1, x2, y2, y31, y32)

p (s, x2, y32)

=

∑

x1∈f
−1

1
(s) p (y2, y31, y32|x1, x2) p (x1) p (x2)

p (s, x2, y32)

=

∑

x1∈f
−1

1
(s) p (y31|x1) p (y2|x1, t, y31) p (y32|x2, t) p (t) p (x1) p (x2)

p (s, x2, y32)

(c)
=

∑

x1∈f
−1

1
(s) p (y31|x1) p (y2|x1, t, y31) p (y32, t|x2) p (x1) p (x2)

p (s, x2, y32)

(a)
=

∑

x1∈f
−1

1
(s) p (y31|x1) p (y2|x1, t, y31) p (y32|x2) p (x1) p (x2)

p (s, x2, y32)

=

∑

x1∈f
−1

1
(s) p (y31|x1) p (y2|x1, t, y31) p (x2, y32) p (x1)

p (s, x2, y32)

(d)
=

∑

x1∈f
−1

1
(s) p (y31|x1) p (y2|x1, t, y31) p (x2, y32) p (x1)

p (s) p (x2, y32)

=

∑

x1∈f
−1

1
(s) p (y31|x1) p (y2|x1, t, y31) p (x1)

p (s)

(b)
=

∑

x1∈f
−1

1
(s) p (y31|x1, s) p (y2|x1, s, t, y31) p (x1, s)

p (s)

(e)
=

∑

x1∈f
−1

1
(s) p (y31|x1, s, t) p (y2|x1, s, t, y31) p (x1, s|t)

p (s)

=

∑

x1∈f
−1

1
(s) p (s, x1, y2, y31|t)

p (s)

=
p (s, y2, y31|t)

p (s)

(e)
= p (y2, y31|s, t) (24)

where

(a) follows from the fact thatt is a deterministic function ofx2 andy32,

(b) follows from the fact thats is a deterministic function ofx1,

(c) follows from the fact thatT is independent ofX2,

(d) follows from the fact that the input probability distributions are independent and from the fact that

X1 → X2 → Y32 forms a Markov chain (Property 2) and

(e) follows from the fact thatT → X1 → Y31 forms a Markov chain (Property 1) and from the fact thatT

is independent ofX1 and hence is independent ofS.

To prove Property 9, we first consider the termH (Y21Y31|ST ) which depends only on the probability distribu-

tion p (t) p (s) (T is independent ofX1 andX2) and the conditional probability distributionp (y21, y31|s, t). We
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note that the conditional probability distributionp (y21, y31|s, t) depends on the marginal probability distribution

p (x1) and not on the joint probability distributionp (x1, x2) from the following equalities:

p (y21, y31|s, t) =
∑

x1∈X1

∑

x2∈X2

p (y21, y31|s, t, x1, x2) p (x1, x2|s, t)

(a)(b)
=

∑

x1∈X1

∑

x2∈X2

p (y21, y31|s, t, x1) p (x1, x2|s)

=
∑

x1∈X1

p (y21, y31|s, t, x1) p (x1|s)
∑

x2∈X2

p (x2|x1, s)

=
∑

x1∈X1

p (y2, y31|s, t, x1) p (x1|s) . (25)

where

(a) follows from the fact thatT is independent ofX1 andX2 and

(b) follows from the fact thatX2 → (X1, T ) → (Y21, Y31) forms a Markov chain (Property 3) and the fact

that s is a deterministic function ofx1.

Hence, the termH (Y21Y31|ST ) is maximized by the marginal input probability distribution p (x1). Similarly,

the termH (Y21Y31|STX1) is maximized by the marginal input probability distribution p (x1).
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